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Introduction: Gene Regulation and Regulatory Networks
Three examples:
mixed Feed Forward Loops (FFL)

MiRNA mediated self-loops

Sponge loops
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i Gene Regulation

di Fisica Nucleare

Gene expression is tightly regulated. All cells in the body carry the full set of
genes, but only express about 20% of them at any particular time. Different
proteins are expressed in different cells (neurons, muscle cells....) according to
the different functions of the cell.

Among the various regulatory
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NN Transcription Factors

and miRNAs

® Regulation of gene expression mainly mediated by:

Transcription Factors (TFs): proteins MicroRNAs (miRNAs) are a family of
binding to specific recognition motifs small RNAs (typically 21 - 25 nucleotide
(TFBSs) usually short (5-10 bp) and long) that negatively regulate gene
located upstream of the coding region expression at the posttranscriptional
of the regulated gene. level, (usually) thanks to the “seed”
region in 3’-UTR regions.
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INFN MicroRNAs as regulatory
genes

MIRNAs expression is regulated by the same TF which regulate all the
other genes

Regulation by miRNAs is a combinatorial process. Each miRNA is
expected to control from one to hundreds of targets while a given mRNA
can be under control of many different miRNAs. Usually miRNA binding
sites are overrepresented in the 3’-utr sequence of target genes.

Transcription Factors and miRNAs share very similar regulatory strategies.
The main difference between the two is that while TF act as a sort of on/off
switch, it seems that the miRNA role is to fine tune the gene expression.




(o Reg u I ato ry N etwor kS 1

Key 1 --> TFs are themselves proteins produced by other genes, and they act
in @ combinatorial way, resulting in a complex network of interactions
between genes and their products.

--> Transcriptional Network

miRNAs also act in a combinatorial and one-to-many way, and,
moreover, are transcribed from same POL-II promotes of TFs.
--> Post-Transcriptional Network
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di Fisica

Key 2 =-=> Biological functions are performed by groups of genes which act in
an interdependent and synergetic way. A complex network can be
divided into simpler, distinct regulatory patterns called network
motifs, typically composed by 3 or 4 interacting components which
are able to perform elementary signal processing functions.
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Optimal gene regulation can only be achieved
combining transcriptional and post-transcriptional

regulation.

High level regulatory functions like noise buffering,

adaptation, fold change detection, stabilization of targets
concentration ratios require the combination
of Transcription Factors and microRNA in suitable elementary

regulatory circuits: “network motifs”
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Several methods exist to study, separately TF-related and
microRNA-related requlatory networks, but comparable information
is lacking to explicitly connect them.

We have developed a database of the most important network
motifs (FFLs, selfoops, feedback loops) combining together TFs,

miRNAs and (in the last version: CircuitsDB2) also lincRNAs

Using:
- Experimental data (mainly from the ENCODE project)

- Genome-wide bioinformatic analysis combining sequence over-
representation, evolutionary conservation, scanning of PWMs,
MiRNA seed search...




o Example: MIRNA mediated
Feed Forward Loops

Mixed Feed-Forward Reqgulatory Loops --> network motifs in
which a master Transcription Factor (TF) regulates a miRNA and
together with it a set of Joint Target coding genes.

Coherent FFL Incoherent FFL Coherent FFL TE
E 1




Example: list of MIRNA

mediated FFLs in CircuitsDB

Human mixed FFLs catalogue --> The list contains 5030 different

I = - TN/, . A\ = e/
 'single target circuits”, corresponding to 638 "merged circuits”,
involving a Total of 2625 joint target genes (JTs), 101 TFs and 133

I miRNAs. # of JTs ran

TF

ged from 1 to 38.
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We have developed a web-based graphical interface to get free
access to the database of mixed FFLs.

CircuitsDB

Hom A database of MicroRNA / Transcription Factor Feed-Forward Regulatory Circuits in Human and Mouse

felcome to Circuits DB, a resource devoted to the identification and analysis of mixed MicroRNA / Transcription Factor
feed-Forward Regulatory Circuits in the Human and Mouse genomes.

Promoters and 3°-UTRs are thought to control the expression of coding genes mainly in response to transcription factors (TF) and
microRMNAs. In particular, several methods exist to elucidate TF-related and microRNA-related regulatory networks, but
Contacts comparable information is lacking to explicitly connect them.

This web-site supports a study of a genome-wide transcriptional and post-transcriptional regulatory netwoark integration, in the
human and mouse genames, based on a bicinformatic sequence-analysis work.

In particular, this web-site is devoted to the study of a particular type of connection between transcriptional and
post-transcriptional interactions: the MicroRNA / Transcription Factor Feed-Forward Regulatory Loops (FFLs), i.e. elementary
circuits in which a master transcription factor regulates a microRNA and together with it a set of joint target protein-coding genes.

Joint Target miRNA
© 2009
Olivier Friard
Davide Cora

These circuits were assembled throught a bicinformatic sequence-analysis pipeline, applied to the human and mouse genomes
(Re el al., Mol Biosyst. 2009 - PMID: 19603121).




INFN Circuits assessment 1
functional analysis

We analyzed each FFL looking for an enrichment in Gene Ontology
categories in the set of their joint targets.

To assess this enrichment we used the standard exact Fisher test with a p-
value threshold
p<10-4

We found a few enriched GO categories involving various
aspects of organism differentiation and development
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/NN Circuits assessment 1
functional analysis

FFLid 4T Fizher test pvalue Cene Ontelogy characterization
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C~..Circuits assessment 2: looking for
cancer related genes

di Fisica Nucleare

In these last few years it is becoming increasingly clear that miRNAs play

a central role in cancer development (e.g. Blattener Mol Syst. Biol. 2008).

—->We filtered our results looking for
FFLs containing at least two cancer
related miRNA or target gene.

Sources: oncomiRs reported in

= Esquela-Kerscher and FJ Slack,
Nat Rev Cancer 2006
- Zhang et al, Dev Biol, 2007

cancer genes reported in
- Cancer Gene Census database.

AP-1 hsa-miR-142-3p
ATF=1 hsa=-muiR=199a*
ATFo|hsa-miR-19%a%
ERhsp=mmB=373
HIF-1 hsa-miR-]19%a*
HMNF-3 hza-let-Ta
HINF-3hsa-let-Tf
HME-3 | hsa-1miR-30a-5p
HMNF-3|hsa-rmBR-30c
HSF2 hsa-let-Ta

HSF2 hea-let-71
HSF2 hea-nuiR=1995%
[EF hsa-miB-125b
TThsa-miR=296

MY C hsa-miR-17-3p
MY C hsa-miR-19a
MY C hsa-miR-20a
NF-=Y hsa-nmR-223
OCTAMER hsa-mR-125b
PAN-4hsa-tmR-123k
SON-5 hza-miR-125b
S0OX-5 hsa-mil-249a
SEY|hsa-miR-221
SEY|hsa-mik-412

MY
MYC
MY

hsa-miR-142-3p
hsa=mmR=15%a*
hea-muR-189g%

hsa-miR-15%a*
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hsa=miR=15%a*
hea-muR-125b

hsp-muR-17-5p
hsa-miR-1%a
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lsa-muiR-1250
hsa-nuR-1250
hea-miR-125b

hea-tmR-221

DoITE
MTCP1
MTCPL
TPR, USP&
MTCPL
COND2
COND2
MYH11, BOL9
MYH11, BCLG
MY
MY
MY
BCL2
EPL22, BCL2

APC, ATF1
IRF4
IRF4
5518

EXT1,C0L1A1

CCND2
BRAF, ATIC




INFN Circuits assessment 3: mixed
FFLs as network motifs

Elementary regulatory circuits (the so called "network motifs”)

were shown
to be over-represented in transcriptional networks.
(Milo et a., Science 2002, Shen-Orr et., Nat Genetics 2002)

In order to quantify the overrepresentation of our mixed FFLs
we perfomed various randomization tests.

-Complete node replacement, Z = 9.2
- Random reshuffling of miIRNA promoters and seeds, Z = 8.1

- Edge Switching, Z=8.4
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Functional role of mixed FFLs

Depending on the type of transcriptional regulation
(excitatory or inhibitory) exerted by the master TF
on the miRNA and on the targets, FFLs may be
classified as

e incoherent (“type I"” FFLs), or

e coherent (“type II" FFLs).



(o Ty p e I an d 11 FF LS

Possible biological role for mixed TF/miR
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* Type II (coherent) circuits lead to a reinforcement
of the transcriptional regulation at the post-
transcriptional level and might be important to
eliminate the already transcribed mRNAs when the
transcription of a target gene is switched off.

e Type I (incoherent) circuits allow for a fine tuning
of gene expression, setting the optimal functional
value of the protein through a miIRNA repression



Additional role: noise damping

Fine tuning is useless without a tight control of
cell to cell fluctuations.

Type I (incoherent) FFLs can also stabilize the
steady state production of the target protein by
damping translational and transcriptional
fluctuations.

In a simple TF-target interaction any fluctuation of
master TF could induce a non-linear increase in the
amount of its target products. The presence, among
the targets, of a miRNA which downregulates the other
targets might represent a simple and effective way to
control these fluctuations.



Study of protein fluctuations via
stochastic equations

The only way to address this issue is to describe
the FFLs in terms of stochastic equations and to
compare the results with those obtained with
that of a standard transcription + translation
process

In both cases fluctuations are proportional to the
mean number of proteins produced by a single
MRNA. This number is a function of the miRNA-
MRNA affinity.



Stochastic equations for gene
expression: two steps model.
(Shaharezaei V| Swain PS PNAS (2008) 105, 1/256)
This model assumes that the promoter is always active and

so has only two stochastic variables: the number of mRNAs
and the number of proteins

Active
promoter




The probability of having /7 mRNAs and 7 proteins
at time £ satisfies the master equation:
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The master equation can be rewritten as a differential equation
using the generating function:
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u=z—landv =z — 1.
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If we assume that the protein lifetime is much
longer than that of the mRNA then the equation
simplifies (the mRNA is at steady state) and can be
solved exactly:

| —b(z—1)e " ]“

F(z,t) =
z7) [ [ +b— b2

leading to an exact expression for the probability
distribution:
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negative binomial distribution:
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The corresponding mean value and fluctuations of the
number of proteins are:

(n) =ab(l —e™").

2 2 —
n°)y —(n)y>=m)(1 +b+be™")

Where b is the mean number of proteins produced by a
single mRNA (burst parameter). Fluctuations strongly

depend on the burst parameter b.
b.
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The same analysis can be performed in the case of the
inchoerent FFL, leading to a relevant reduction of noise

The noise reduction can be traced back to two parallel
mechanisms:

- The different efficiency of the mRNA translation in the two
cases:

noise reduction is a function of the miRNA-mRNA affinity

-The correlated fluctuations of miRNA and target under
fluctuations in the transcriptional efficiency of the master
Transcription Factor



Master equation for the incoherent FFL

Master Equation
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Noise Buffering I
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Noise Buffering II

FFL

N
Join
1arge

.
N MO RM D D =2 N MDD
T L
——
—
1_;
e
020
| = il B B |

) M VTR .y,
sl 1 M m’ g e} . .M'I'T - q! N H,ma-w "MW

X<

o

o.

0.

16 |- Open circuit N Open circuit
AL WW o \ ‘*% e
= . - i \ I Vil .

‘\;'/E T e W e L ! o ) w : it X ) W‘NWW” i l l

o8 L H w all Y Y q """F 4 ALY i

¥ “hf : i Toin
0.6 |- L Jlarge
0.4 " " . . . L v
2000 3000 4000 5000 6000 7000 8000 9000

Time (seconds)

Probability Density
0.005

— L

Open circuit

0.004 -

0.003
0.002 |

0.001

600 800 1000 1200 1400 1600

Protein Number



Optimal noise reduction for intermediate values of
MIRNA/MRNA affinity
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Example : regulation of PTEN

miR-22; miR-26a
‘ miR-23b
! miR-19a, miR-23b

miR-106b; miR-25
miR-193b, miR-93




Example 2: regulation of VEGF

miR-106a
miR-106b; miR-20a

’ iR-93; miR-17

iR-15a; miR-34;




MIRNA mediated selfloop

The same analysis can be extended to the simplest
possible mixed circuit: the miRNA mediated selfloop in
which an intronic miRNA regulates its host gene.
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MIRNA mediated Selfloops 2

Also in this case we found fine tuning and noise
reduction properties. Moreover this circuit, depending
on the values of the parameters, is able to perform:

adaptation and fold-change detection

The parameter space can be summarized using only
two quantities: the “effective activation” <q>/h_r
where <qg> is the mean concentration of the activating
TF and h_r the corresponding dissociation constant and
the miRNA repression strength 1/h
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Effective Activation

<q>/h>>1

<q>/h~1

<gq>/h <<1

-

Adaptation

p/pp~0.5

Noise buffering

P/pe>1

Repression Strength



“Sponge-like” interactions

RNA transcripts can cross-talk by competing for common
microRNAs. These transcripts act as “sponges” for the
mMiRNAs thus inducing an indirect regulatory interaction on
their partners

Sumazin et al. Cell 2011
Cesana et al. Cell 2011
Tay et al. Cell 2011



Example of a sponge like interaction
(from Cesana et al Cell 2011)
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Two main functions:
- Enhance and speed up target protein production
- Correlate target-TF fluctuations: homeostatic effect




These loops show a very peculiar enrichment pattern:
They are strongly enriched under random reshuffling of

miRNA-target links
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But at the same time they are strongly depleted under random
reshuffling of TF-target links.
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Sponge loop functions I

This anomalous enrichment pattern is due to the peculiar
behaviour of this circuit.

By varying the concentration of the miRNA one can tune the
TF/target ratio to any desired value. The particular topology of
the loop and the combination of direct transcriptional
regulation and indirect sponge interaction is very effective in
controlling the stochastic fluctuations of this ratio.

This circuit is present in all the situations in which the TF and
its target must be kept to a fixed concentration ratio
notwithstanding the environmental noise (e.g. when they are
part of a complex) but should be avoided in all the other cases
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Sponge loop functions 11

The sponge loop is also able to speed up the switch on/switch
off dynamics of the target.

—>at high miRNA concentration the switch on time decreases
- at low miRNA concentration the switch off time decreases
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Example : regulation of RB1
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INFN Conclusions

> The main purpose of our work was to systematically investigate
connections between transcriptional and post-transcriptional
network interactions, in the human genome.

- We concentrated in particular on three classes of mixed circuits:
mMiRNA mediated Feed-Forward Loops, mixed selfloops
(mediated by intronic miRNAs) and sponge loops

- We have shown, solving the stochastic equation which describes
these circuits that the effect of the interfering miRNA is to damp
the intrinsic noise in protein production and more generally
to enhance the robustness of the steady state level of the
target protein concentrations

We also performed a bioinformatic search of these circuits which
is available in a public database:
http:/ /biocluster.di.unito.it/circuits/
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